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Recent research discovers that gender bias is incorporated in neural word embeddings, and
downstream tasks that rely on these biased word vectors also produce gender-biased re-
sults. While some word-embedding gender-debiasing methods have been developed, these
methods mainly focus on reducing gender bias associated with gender direction and fail to
reduce the gender bias presented in word embedding relations. In this paper, we design a
causal and simple approach for mitigating gender bias in word vector relation by utilizing the
statistical dependency between gender-definition word embeddings and gender-biased word
embeddings. Our method attains state-of-the-art results on gender-debiasing tasks, lexical-
and sentence-level evaluation tasks, and downstream coreference resolution tasks.

Gender Bias in Word Embedding

Previous research has discovered and defined two types of gender biases in word vectors:
gender bias associated with gender direction and gender bias in word vector relation.
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Figure 1: Gender bias associated with gender direction (reprigted ﬂom [1]). This figure
shows the projection of word vectors on to the gender direction he — she.
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Figure 2: Gender bias in word vector relation (reprinted from [2]). This figure shows the
number of male neighbors for each profession word against its bias-by-projection.
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Figure 3: Relation between gender-definition word vectors and gender-biased non-gender-
definition word vectors.

Based on the half-sibling relationship illustrated in Figure 3, we propose that the debiased
non-gender-definition word vectors V  is learned by subtracting the approximated gender
information G from the original non-gender-definition word vectors V y:

VN = VN_Ga (1)

where the approximated gender information G is obtained by predicting V y using the gender-
definition word vectors V p: )
G =E[VN|VD]. (2)

Since Vy and V p embody the same gender information, when predicting V , using V p, the
underlying gender information is learned by G. Furthermore, as V ;, contains little semantic
information apart from the gender information, when approximating V 5 using V p, the se-
mantic information of V y is not learned by G. Hence, when we subtract G from V , only
spurious gender information is eliminated, and the semantic information of V y; is preserved,
which is eventually the gender-debiased word embeddings.
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Half-Sibling Regression for Gender-Debiasing

Input: Matrix V  of gender-definition word vectors as columns, Matrix V 5, of hon-gender-
definition word vectors as columns, Ridge Regression constant «.

—1
1, Compute the weight matrix of Ridge Regression: W <« ((VD)TVD — aI) (Vp)' Vi

2, Compute the approximated gender information: G < VW ) )
3, Subtract gender information from the non-gender-definition word vectors: Vi < Vi —G

Output: HSR debiased non-gender-definition word vectors V y.

Algorithm 1: HSR for gender-debiasing

Gender Direction Relation Task
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The average absolute bias-by-projection of the embedding of the top 500 male-biased words
and the top 500 female-biased words iZ] Bias-by-projection is the dot product between the

target word and the gender direction he — she
Gender-Biased Word Relation Task
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The result of five gender-biased word relation tasks proposed by [2]. Smaller results indicate
better gender-debiasing performances.

Downstream Task: Gender Coreference Resolution
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The difference between the outcomes of WinoBias-PRO and WinoBias-ANTI datasets.
WinoBias dataset evaluates the level of gender bias in coreference resolution outcomes [3].
A model passes the WinoBias test when the difference between the outcomes of WinoBias-
PRO and WinoBias-ANTI datasets is zero.
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